2(3w+2w^2)-6=2w(w-4)+10

Simple and best practice solution for 2(3w+2w^2)-6=2w(w-4)+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3w+2w^2)-6=2w(w-4)+10 equation:



2(3w+2w^2)-6=2w(w-4)+10
We move all terms to the left:
2(3w+2w^2)-6-(2w(w-4)+10)=0
We multiply parentheses
4w^2+6w-(2w(w-4)+10)-6=0
We calculate terms in parentheses: -(2w(w-4)+10), so:
2w(w-4)+10
We multiply parentheses
2w^2-8w+10
Back to the equation:
-(2w^2-8w+10)
We get rid of parentheses
4w^2-2w^2+6w+8w-10-6=0
We add all the numbers together, and all the variables
2w^2+14w-16=0
a = 2; b = 14; c = -16;
Δ = b2-4ac
Δ = 142-4·2·(-16)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-18}{2*2}=\frac{-32}{4} =-8 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+18}{2*2}=\frac{4}{4} =1 $

See similar equations:

| 3m+m=-14 | | x-1/9=18/27 | | 0.25(8x+4)=7 | | 1/4(8x+4)=7 | | -2n+7=23 | | 4.5x+12.5=21.5 | | (6•9x)+(6•1=) | | x^2+8x+8x+45=-6x | | 12.4+w=26.9 | | 8x=3+40*6 | | 12x+13-20x-21=0 | | 12(4x-2)-5(2x-6)=26 | | 2x-3x-5x+x=20 | | 1/2x-7+x-5/4x2-49=4/6x-21 | | (31x-4)+15x=180 | | 3(2x−2)−x=33−3−1 | | 3(2x-2)-x=33-3-13(2x−2)−x=33−3−1 | | x+0.003x=1157 | | 5(x+1)^2=60 | | 5(x+1)^2=69 | | 2x+15​​=5 | | 3x+8-6x-10=19 | | x+0.03x=1157 | | 5x-2(x+3)=-9+5x+11 | | 4x-3x=+2 | | 2x-1/4=9x/2 | | 6m^2+12m= | | 3(y-2)+15=-3y(y-3)+6y | | 6,5=y-5,1 | | 2x-3/3+4x/3=7 | | 5x+2=3x=12 | | 8.5^2+x^2=15^2 |

Equations solver categories